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ABSTRACT 

A number of finite element formulations involving discontinuous weighting functions have been tested 
against analytic solutions for a steady scalar convection-diffusion problem at intermediate Peclet number, 
with a 'hard' downstream boundary condition. The emphasis is on extending these methods to isoparametric 
bilinear and biquadratic elements. In order to do this a procedure is given for the exact calculation of 
shape function Laplacians. Having confirmed the success of the Brooks-Hughes streamline upwind 
Petrov-Galerkin (SUPG) method for isoparametric bilinear elements, formulations for biquadratic elements 
are examined. Galerkin least squares offers little advantage over SUPG in the test problem. The generalized 
Galerkin method of Donea et al. gave excellent results, but because of concern over the possibility of 
cross-streamline artificial diffusion in some cases, a strictly streamline formulation incorporating the optimal 
parameters of Donea et al. is proposed. This gave excellent results on a sufficiently refined mesh. 
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INTRODUCTION 

The convection-diffusion problem 
It is well known from finite element theory and practice that Galerkin methods applied to 

non-symmetric operator problems, such as arise when both convection and diffusion terms are 
included in the energy equation, lack the 'best approximation' property. The solutions of many 
convection-diffusion problems, where convection is significant, are perturbed by spurious 
oscillations, or 'wiggles', which make the solution worthless. 

Many efforts have been made to overcome this difficulty. Several of them consist in deformation 
of shape functions so as to upwind the difference stencil, that is to shift it in the upstream 
direction, to give a better approximation of convection terms at high Peclet numbers. Upwinding 
techniques for finite elements have been developed intensively since the mid-1970s (1 and 
references therein). The method has been formalized and mathematically justified in the works 
of Hughes and co-workers2-6, and in parallel by Johnson and his group7 - 9 . Generally, a new 
weighting function space is introduced consisting of the sum of the usual Galerkin shape function, 
plus an 'upwind' term formed from the scalar product of the velocity vector and the gradient 
of the same shape function, multiplied by a coefficient which may be dependent on the mesh 
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Peclet number. Using this space of modified, discontinuous weighting functions, the streamline 
upwind Petrov-Galerkin (SUPG) method2 was formulated as the proper weighted residuals 
variational method, capable of high accuracy and not subject to the deficiencies of the former 
streamline upwind (SU) method. This latter method, also known as selective upwinding, consists 
in applying the modified weighting to the convection term only, and can be interpreted2 as the 
addition of a portion of artificial diffusion to the physical diffusion in the differential equation, 
followed by conventional Galerkin treatment. This improves stability, but at the expense of 
accuracy, and though smooth solutions can be obtained they are often overdiffuse. 

Recently, Hughes and co-workers10,11 have indicated that the SUPG method is a special case 
of a more general methodology—the so-called mixed variational formulation. In order to improve 
the stability of the Galerkin method, a Lagrange multiplier is used as an additional variable. 
In this way, the primary variables, such as temperature in the energy equation, belong to a 
larger space of functions, giving more flexibility and permitting better approximation. The 
problem arises that not every mixed formulation is eligible for combination with the Galerkin 
method, because of the requirement of the Babuska-Brezzi stability conditions10. However, 
Hughes and co-workers10 have proved that addition to the Galerkin bilinear form of various 
least-squares-like terms, containing integrals over element interiors, allows one to satisfy or at 
least circumvent the BB condition. In the case of the convection-diffusion problem, this additional 
perturbation term is based on residual forms of the Euler-Lagrange equations resulting from 
momentum or energy conservation. The convergence of this Galerkin least squares (GLS) 
formulation was proved in Reference 11. 

Aims of the present work 
The aim of the present work is to test a number of versions of SUPG and GLS formulations, 

described in the following section, together with the classical Galerkin method, implemented 
using both bilinear and biquadratic isoparametric elements, in an abstract steady scalar 
convection-diffusion problem at moderately high Peclet numbers. The test problem has a 'hard' 
(Dirichlet) downstream boundary condition, and exhibits steep exit boundary layers, providing 
a quite severe test for the methods. Numerical results are compared with analytic solutions for 
the cases with and without a source term. It should be noted that most previous tests of these 
methods have been on purely hyperbolic problems. To our knowledge no tests against exact 
solutions are available for a two-dimensional mixed hyperbolic-elliptic problem such as is 
considered here. 

The importance of the diffusion term in the exit boundary layers means that the Laplacian, 
∇2 T, cannot generally be neglected in the discretized problem. In bilinear elements, which have 
previously been used to implement the schemes, the Laplacian is identically zero, but for 
isoparametric bilinear and biquadratic elements this is not the case. We wish to extend the 
methods to isoparametric elements, because of their geometrical flexibility, and to biquadratics 
in particular, because of their generally greater efficiency in providing accurate solutions. We 
therefore describe a convenient algorithm for evaluation of the second derivatives of shape 
functions with respect to global co-ordinates in isoparametric elements. Later the test problem 
is presented, its solution given and extended to the case including a source term. Finite element 
results are compared with exact solutions in the subsequent section, and finally conclusions are 
drawn. 

GALERKIN LEAST SQUARES AND UPWIND FORMULATIONS 

Let us consider the simplest, steady-state convection-diffusion equation (7): 
L(T, K) = q (1) 
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where 

T = T(x) is the dependent variable (e.g. temperature), is the spatial domain of the 
problem with d the space dimensionality, v is the velocity, K the diffusivity and q a volumetric 
source term. V denotes the spatial gradient operator. We assume that velocity is divergence free: 

and K is constant. 
As usual, Dirichlet and/or Neumann boundary conditions are imposed, 

where Γ is the boundary of Ω and 

n is the outward normal vector to Γ, and g and h are given functions of position. 
The convection dominated problem corresponds to small K, or, more exactly, to large element 

Peclet number, 

where d is a characteristic dimension of the mesh element. 
The finite element Galerkin least squares (GLS) variational formulation may be stated as 

flows. Let Ld be the shape functions space, and Vd the weighting functions space, both composed 
of the same class of functions up to inhomogeneous Dirichlet boundary conditions. The problem 
consists in finding Td ∈ Ld such that for all 

and the Lagrange multiplier is Τ. The SUPG method in its simplest form may be obtained from 
the above formulation by putting: 

Both SUPG and GLS are weighted residuals methods, and can be called consistent upwinding 
methods. The corresponding Euler-Lagrange equations may be written as follows: 
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where is the unit vector normal to the 'positive' side of Γint (chosen 
arbitrarily), and ∇Γ+ — ∇T- is the difference between the limits of gradients of T as Γint is 
approached from positive and negative sides. 

In contrast to the formulation presented above, the streamline or selective upwinding method 
(SU) is not of the weighted residuals type. It can, however, be obtained from (6) by setting P2 
equal zero and deleting the Laplacian in P1 and D: 

A question that arises immediately in the use of these methods is: what should be the value of 
the multiplier Τ? For the one-dimensional constant coefficient homogeneous convection-diffusion 
problem with linear interpolation on regular elements of length d, analysis gives the well-known 
result (2), yielding nodally exact solutions: 

No corresponding result is available for multi-dimensional problems, and ad hoc generalizations 
have been used. The structure used by Brooks and Hughes with bilinear elements is equivalent 
to taking the multiplier as: 

This is evaluated at integration points, using quantities expressed with respect to local 
co-ordinates: 

and correspondingly for the η-direction. The characteristic element dimensions dξ and dη were 
defined for each element as, respectively, the distance between images of the (ξ,, η) points (—1,0), 
( + 1,0) and (0, — 1), (0, +1) on the computational domain. Velocity components were obtained 
from: 

where eξ and eη, are unit vectors directed positively along the mapped local co-ordinate axes. 
In isoparametric elements the local coordinate directions may vary from point to point, so 

in place of the above element-wise definition of unit vectors, we prefer to calculate integration 
point values as follows: 

and correspondingly for eη. ∂ξ denotes differentiation with respect to ξ, etc. Repeated subscripts 



PETROV-GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEM 209 

I indicate summation over nodes, and WI is the weighting (shape) function at node I. (xI; yI) 
are the Cartesian nodal coordinates. 

It is also convenient to use point-wise definitions of element characteristic dimensions in the 
x and y directions: 

where l = 1 for biquadratic elements, and l = 2 for bilinear. This gives similar dimensions for 
a biquadratic element and for the 4 bilinear elements formed on the same 9 nodes. Local 
coordinate forms are then obtained as: 

The question of optimal upwinding parameters for use with biquadratic elements has been 
considered by Donea et al.12. From analysis of the simplified one-dimensional problem, they 
found that α, as given by (10b), is appropriate for centre (mid-side) nodes, but that for 
inter-element (corner) nodes, ½α is replaced by β: 

These results were generalized to multi-dimensions using a vectorial multiplier, A, leading to a 
formulation in which the discontinuous part of the weighting ΤV·∇W in SUPG (6) is replaced 
by λ· ∇W. The components of A are defined in terms of α or β, depending upon whether mid-side 
or corner character is appropriate. Donea et ah write the expansion of λ· ∇W in Cartesian 
components; however, it seems to us that mid-side or corner character of the components of A 
can only be defined by reference to local coordinates. We thus write the discontinuous part of 
the weighting for nodes of the element illustrated in Figure 1 as: 
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and correspondingly for the η components. The functions α and β are shown in Figure 2. 
It should be noted that the Brooks-Hughes SUPG involves a tensorial diffusivity-like term 

with a corresponding flux directed strictly along the streamline. The Donea 
form, however, introduces a diffusivity λv giving a flux is not in general parallel 
to v, so the possibility of artificial diffusion across streamlines exists. This occurrence was 
considered a serious disadvantage of early upwinding methods. However, as can be seen from 
Figure 2, α and β are approximately linear functions for low Peclet number, and in this case, 
at nodes 1, 3, 5, 7 and 9 in Figure 1, ■ will be approximately parallel to v, provided At 
nodes 2, 4, 6 and 8, where we have the mixed mid-side and corner forms, A will be to one side 
or the other of v, with, presumably, some possibility for cancellation of cross-streamline diffusion 
over the element. The situation at high Peclet, when 1, seems less favourable, with the 
direction of A being determined by the relative magnitudes of dξ and dη 

In view of these concerns we have experimented with a version of the Brooks-Hughes form, 
(11a) for biquadratic elements, that incorporates the Donea optimal parameters. Best results, 
which will be described later, were obtained by blending the A components in a second order 
fashion, as follows (the components are taken as the corner or mid-side forms as appropriate): 
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This, of course, reduces to the expected one-dimensional result, but otherwise gives slightly lower 
values of τ than the first order blending corresponding to (11a). 

Finally, for comparison with these various 'optimal' forms, we have carried out solutions with 
the multiplier defined as: 

where c is constant over all elements and is chosen by numerical experiment. 

THE LAPLACIAN FOR ISOPARAMETRIC BILINEAR AND 
BIQUADRATIC ELEMENTS 

As can be seen from (6) it is necessary to calculate integrals over element interiors of the Laplacian 
of the shape functions, and as a consequence of the use of numerical integration, values of the 
Laplacian are required at the integration points. The way to obtain these, in isoparametric 
elements, is not immediately obvious. 

In order to derive proper formulae it is convenient first to depict the transformations involved, 
in Figure 1. 

Let us denote by F the one-to-one transformation from the local to the global co-ordinate 
system: 

and the corresponding inverse transformation as follows: 

For isoparametric elements we have: 

where summation on J is implied. Let us note that the functions and for bilinear and 
biquadratic elements are contained in the forms: 

where 

Let us develop the functions and as Taylor series in the neighbourhood of a point 
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Other derivatives vanish identically on element interiors as a consequence of (23). Of course, 
we can easily find relationships between the coefficients by noting that 

etc. and differentiating (23). For example, 

However, it is not necessary to pursue this, as the derivatives can be obtained via shape functions 
in the usual finite element way. 

Because the transformation F has an inverse G, i.e. 

It follows that we can also develop the functions and as Taylor series in the sufficiently small 
neighbourhood of the point (xG, yG) giving: 

We now write expressions for the Cartesian derivatives of the shape function, (recalling that this 
is a compound function): 

To calculate the coefficients α 1 , . . . , α 5 and β1 β5 we substitute (27) into (24), and as a 
consequence of (26) obtain an identity. 

Then, comparing coefficients of corresponding powers of Ax and Ay, we obtain for the first 
order terms: 
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Similarly for the second order terms: 

J is given in (26a), and the coefficients a1 and b1 are calculated in the usual way, e.g. 
etc. Since the bilinear interpolation is contained within the biquadratic, the 

above relationships are valid for bilinear isoparametric elements, when 

The computational costs involved in the calculation are not high, because values of the shape 
function Laplacians at integration points need to be calculated only once, and then stored on 
disc. It should also be noted that the method used here gives exact values, and can be extended 
for higher order interpolation as well. 

THE TEST PROBLEM 
Let us consider the model steady, scalar convection-diffusion problem, illustrated in Figure 3, 
with differential equation: 

If this is interpreted as the energy conservation equation, then K is identified as: 
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and Q is a heat source term, corresponding for example to viscous heat generation. The following 
Dirichlet boundary conditions are used: 

For significant values of the Peclet number we can expect steep exit boundary layers, and when 
discretization is such that mesh Peclet numbers 

(where dx, dy are characteristic element dimensions in x and y directions) are also large, but not 
necessarily very large compared to unity, we expect the classical Galerkin finite element method 
to yield oscillatory results. The problem poses a severe test for methods seeking to deal correctly 
with 2-dimensional convection-diffusion involving sharp flow direction gradients, and there also 
exists opportunity for spurious cross-streamline diffusion. 

For this problem, series solutions are available, which may be evaluated to high accuracy, 
for the cases of zero and non-zero source term. 
(a) Q = 0. The solution is obtainable using separation of variables13: 

(b) Q ≠ 0. We extend the series solution to the case of a non-zero source term in the following 
way. Let Φ satisfy (32) with Q = 0 on the domain Ω with boundary conditions on Γ as stated 
in (34). Let 

Define 

Then T satisfies the boundary conditions, and it can easily be shown that T is a solution of (32) if: 

For instance, if we choose 

Then 
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This is the form used in tests with a non-zero source term. 
The series solutions were evaluated, for comparison with numerical results, by summing until: 

Selected tests showed that 

Note that (36) is written avoiding positive exponents, which would cause computer overflow. 

RESULTS AND DISCUSSION 

Cases studied and finite element implementation 
Meshes with the same 121 nodes, symmetrically placed about the diagonal x = y of the square 

domain, were used for both bilinear and biquadratic elements. As seen in Figure 4, elements are 
chosen not all to be rectangular, to provide some test of the algorithms on non-orthogonal 
isoparametric elements. The Figure also shows the lines I and II along which nodal values were 
selected for comparison with series solution results. 

Some additional computations were carried out with biquadratic elements on the refined mesh 
shown in Figure 5, obtained by a 2 x 2 subdivision of the previous mesh. 

Solutions to the test problem were carried out, with parameter values Kx = Ky = 80 (33) and 
H = 10 (40), giving flow at 45° to the axes, and an appreciable effect from the source term. 
Analytic results are shown in Figure 6, along the mesh lines I and II indicated in Figures 4 and 5. 
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The resulting minimum mesh Peclet numbers, occurring in the exit region, are 4 for biquadratic 
and bilinear elements on the coarse mesh, and 2 on the refined mesh. 

Finite element calculations were carried out using 64 bit working. 

Computations on the coarser mesh (Figure 4) constant upwind parameter (19) 
We first consider methods implemented using the multiplier Τ defined according to (19), and 

examine the dependence of results on the constant upwinding parameter c. 

SU method. Computed results are displayed in terms of plots of departures from the analytic 
solutions. Figures 7a and b refer to SU on biquadratic, and Figures 8a and b to bilinear elements, 
sharing the same nodes. The biquadratic results are highly oscillatory, and although the amplitude 
of the oscillations decreases as upwinding constant c is increased, the solution is then overdamped 
showing significant negative errors. It is apparent that no value of c gives solutions that are 
both smooth and accurate. This is anticipated, as a consequence of the non-consistent upwind 
weighting, which is particularly noticeable in the presence of the source term, and which is 
equivalent to the introduction of a streamline directed artificial diffusivity. 

For the zero source term case, SU on the bilinear isoparametric elements is virtually equivalent 
to the consistent SUPG formulation, on account of the small values of shape function Laplacian; 
hence the reasonable results obtained for this case on the diagonal, line I (Figure 8a). When the 
source term is non-zero (Figure 8b) sharply increased negative errors clearly show the 
consequences of inconsistent weighting, with overdamping by artificial diffusivity. 

Accuracy on line II is overall less good, since all these nodes lie within the steep exit boundary 
layer; additionally, the proximity of the corner (0, 1), where a discontinuity in the boundary 
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conditions of the test problem exists, produces larger discrepancies at small x. As will be seen, 
a finer mesh is required to resolve the solution satisfactorily along line II. 

SUPG. We first consider results using the upwind structure based on (19) for biquadratic 
elements. Here, errors for the computations with and without source term are almost identical, 
and plots are shown only for the case with non-zero source (Figure 9). Results are significantly 
improved, as compared with those from SU (Figures 7a and b) as anticipated, particularly in 
the presence of the source term. However, oscillations persist at higher values of c, when solutions 
show a tendency towards overdamping, though much less pronounced than in the SU 
calculations. 

The pattern of behaviour exhibited by the bilinear results is very similar, (Figure 10) though 
overall less oscillatory as a consequence of the absence of higher order terms in the interpolation. 

GLS. Again, GLS copes equally well in the cases with and without source term, and we display 
only the results for the latter case. As compared with SUPG, GLS on biquadratic elements 
yields marginally better results (Figure 11) with errors being a little more evenly balanced negative 
and positive. Using bilinear elements, virtually no difference from SUPG was seen, as expected 
(Laplacian terms negligible), and these results are not displayed. 

Coarse mesh, optimal upwind formulations 
We now consider the various 'optimal' formulations: the Brooks-Hughes form for bilinear 
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elements, (11)—(15); the Donea form for biquadratic elements, (17); and the strictly streamline 
form incorporating Donea optimal parameters for biquadratic elements, (18). 

Figure 12 compares results from the three formulations. The optimal bilinear form shows little 
improvement over the best result obtained using a constant upwind parameter (c = 0.4, Figure 
JO); however, in the absence of other guidance about how to select the best value of c, it is of 
obvious value. 

The Donea form for biquadratic elements produces impressive results with, for the first time, 
relatively good performance in the edge region, on line II. Similar accuracy was obtained in a 
further run (not shown), where the flow angle was varied from 45° to 26° degrees from x-axis. 
In view of the concerns expressed earlier about the possibility of cross-streamline diffusion in 
this formulation, it is probably not safe to generalize from these results, and further testing on 
problems with less simple flow fields is desirable. 

The strictly streamline form for biquadratic elements (18) gives results on the diagonal, (line 
I) that are comparable in accuracy to the Donea formulation, but performs significantly less 
well in the edge region, (line II). Noticeably less good results, which are not shown, were obtained 
with a first order blending of λ components, as used in (11a). 

Computations on the refined mesh (Figure 5), constant upwind parameter {equation 19) 
SU calculations on the refined mesh showed decreased oscillations, with errors under half the 

magnitudes obtained on the coarser mesh. However, qualitative behaviour was identical, with 
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overdamping of the solution occurring before complete elimination of oscillations, and the results 
are not shown. 

SUPG results on biquadratic elements are more significant, and are shown in Figures 13. 
Accuracy, as expected, is substantially improved, and it is interesting to note that in the edge 
region, on line II, the exact solution is now approached from below as c is increased from 0 to 0.2 
(cf. Figure 9, where numerical results fall as c rises from 0 to 0.4). The refined mesh solution 
for c = 0.1 shows little oscillation, and in the absence of knowledge of the exact result, could 
well be taken as satisfactory. It is clear, though, that a better solution is obtained using a 
somewhat higher value of c. Thus lack of obvious oscillations cannot be taken as a safe indicator 
that the best possible solution has been calculated. Note that for a much higher value, c = 1.0, 
the solution deteriorates sharply near the exit corners, indicating the existence of an optimum 
value. 

It should be noted that although mesh Peclet numbers in the critical exit region are around 
2 on this refined mesh, significant oscillations still occur in the solution given by the classical 
Galerkin formulation. 

Refined mesh, 'optimal' formulations 
Figure 14 compares the Donea and strictly streamline formulations for biquadratic elements. 

On the diagonal, the latter shows somewhat larger errors in the exit boundary layer, but is 
nevertheless within 1% of the analytic solution (note the expanded scale of the plot). In the 
edge region, line II, both methods are of comparable, high accuracy. 

CONCLUSIONS 

A number of formulations involving discontinuous weighting functions have been applied to a 
quite severe convection-diffusion test problem. The success of SUPG on bilinear elements, 
particularly when 'optimal' parameters are incorporated, as proposed by Brooks & Hughes2, 
has been confirmed. Nevertheless, extension of these methods to isoparametric bilinear, and 
particularly to biquadratic elements, is of interest, because of the geometrical flexibility of these 
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elements, and the generally greater efficiency of biquadratic interpolation. Implementation 
requires calculation of integration point values of shape function Laplacians, and a convenient, 
exact procedure has been given that is applicable to isoparametric bilinear, biquadratic and 
higher order elements. 

The GLS formulation showed little advantage over SUPG on biquadratic elements, and the 
emphasis has thus been on investigating SUPG, particularly with the incorporation of 'optimal' 
upwind parameters. 

The generalized Galerkin method, proposed by Donea et al.12 for biquadratic elements, gave 
remarkably good results, even on a relatively coarse mesh. However, because of concerns that 
this is not a strictly streamline method, a form of SUPG was proposed, having a similar structure 
to that used by Brooks and Hughes with bilinear elements, and incorporating the optimal 
parameters of Donea et al. On a sufficiently refined mesh (but one where the classical Galerkin 
formulation still fails) this gives excellent results. 

The test problem used in this work was necessarily idealized, in order to obtain analytic 
solutions; in particular, the velocity field is trivially simple. Generalization from our results 
should, therefore, be made only with caution; nevertheless, we believe that it has been shown 
how the SUPG method can be extended successfully to higher order and isoparametric elements. 
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